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The effect of variations In the tme of wan llne cm the
section characteristics of mver4 repi%emtative l’W2AI.uw-drag
airfoils ‘wasinvestigated● The test results are ooqpered with
theoretical predictions and indloate trends that facilitate the
oholce of mean llne in the dhmnce of tests.

Immmclrml

lllievlng *signer, &t& a variety of man llnes at hls dlqmml,
is oacfrcnted with the problem of chcos~ the pzmper mean llne for
a particular alrfoll application. As an aid In the proper selection
Or meanlines, tests have been made In the IWACAtwo-MmensionaJ.luw-
turbulenoe pressure tunnel of some EUM#iluw-drag drfolls to observe
the effects of varying the -an line of airfoils of the samefemily.
The rolatlve adwntages to be gahd by the use of loading of one
type in preference to mother are dlmmsed, and ~erlmental. twt
data and tiemeticnlly calculated values for the airfoils tested are
given to Indicate the limltati~ns of the theo~.

TESTMOrHoIsl
. .

In orbr to obtain a representative test -p of Wrfoils,
membem of the HACA 63-sertes, NACA65-series, end WCA 66-seriee

Wit the tlm this paper was crigjnally p@llehe~ some of the
corrections reguired fcr ccmrwthg the test data to free-a,lrcmdltiaus
had not been dete~ed. The meaeured vslues of section lift coeffi-
cient Cl (fl@ .1 to U, fi~ , 13 and15) shcu3d be corrected by
the fclloqlng egpatlan

c%ormcta)
= 0*$)6*Z + O*O1

The measured aeoticm en@es of sero M% (fig. 12) vIU therefore be
sli@My differant afterthe aforemmnticned correction is @lled
to the llft data●
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milecrk~ &zfolls ti.tibident$w#. ~asic tklelmess foniw
(see reference 1)”for the’same design lift wltb the

uniform-1.wyitiap M.ne, that isf wlt?a a =,1.00, end ~ti ~ l-s
other than a = 1 Al;””AM’oIIs of We IUCA $-series were chomn to
givO a caniberand a thickness variatlcm,

. . . .“. ,%. ... .

All the altioils, mnetzwtad as described In reference 1,
were i3binch-ahordmodels and were tceted in the smooth conditim

at Reynolde nunibexwof approximately 6 x 106 end 9 X 10G; t.
models of thickness equalto or greater than 18 perceut of the
chcmd (OJ& ) were aleu tested with a standard roughness a@L1.ed

., to.the @uUng edgb .(@ee.reference 2) at..aReynoldsnuniber of

apjroklmately””6“x 1060 Lift @d. “~ values were obtained fnm
tuuriel~ and wake-.eurveypreewure meamrements, and ltchln&

7moment values ‘were obtained”from a belance (reference 1 .

Ammage tunnel conctant3 for these tests m

Tunnel texlk
“. . R@ldF~ number, R “ pressure -c pres~ n%;r

.“ (atm) (lb/sq ffi)

6 x 106
t

89: 0.137
6 ,103

.,”. 9 k ti8 ,153

RI!sum3

Routine-test remits giving section characteristicsfor airfoils
tested in a c3moth oontition are presenteflh figures 1 to 7. The
reeul.taare @.vem In standard chart form, with two alrfcdia to each
chart, for the folhwlng airfollo:

. .

NAOA 63,4-4a), a = 1.0

W-W 63,4-4=, a = o.3

I’?ACA65a-415# a =“1.0 .

-,

NAY65a-4158“a = O *5

.mm “~ -%18, ‘a=l.O
. .. ..

. . .-. . “m
.-
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65s-418., a..E.-0.5., .......... .

.6S442i, al= .i,o “ ... . .. -.

66,3-418, a m 1.9 .,. .
..-.

66,3-418, s .= 0,8. ” “

-6.6,3-6.18i a E 190. ..

6S$~618, a =..06$- . . .
.

66,2416,:.a== 1.0

‘Charts of the air follfi “w$th “a.standard roughness” qre
“ given in figures 8 to. llj the .llft r.nd drag characteristics
axe preyented in thqsd charts” for all of the afore-mentioned
alrfoile , 0.180 Ishiok or thiokep , “with the exception Qf the
ITACA 66,3-418, a = 1.0 an-d the HA(IA 66,%418, a = 0.8 air-
foila; “The oharacteristios for the corresponding smooth
airfoil with ha = 1.0 are also shown on each chart for com-
parleon. ..

Measured values and theoretical mean-lice values of
angle of 5er~ lift, design eection lift ooefflcient, and
section pitching-moment coef’fioient are given in figures
12 to 14, reOpect Lvely. The theoretloal mean-line va~~es
have been computed by using the valuee aad methods of ref-
erences 1 and 3.

Figure 15 shows”the variation of design seotion lift
coefficslent and seotion pitching-moment coefficient wi$h
airfoil thiakness for.several airfoils of ttie MAW 66A
serias. The results ~lven were obtalnod from tunnel meas-
urements: from mean-line (thin+airfoll-theory) Wloula.ttons:
from integratlag of tbo oom%ined theoretical pressure dis~
tributions due to basic form thiokness and to camber

‘=(+’~)’
(see .refeaence 1); and from a 9!heodorsen

calculation (see reference 4) on the HA(!A 6%-418, a = 1-O
alrfotlm !Che symbols in”the=formula for “S are defined as

...

. .



s pressure coefficient
. ..,. . . .

v velocity on surface of basic thickness form
,.

v free-e tream ;eloctty

Au velocity in~;eaent due to mean-line load distr~-
l)ution . .. . . .

,
Dt$CUSSIGN

Soct20n Chara~teristics Applicable to Ylng Design

●

Aerodynamically, wing design u8ually Conststs of the
selection of suitable root agd tip airfoil eections~ The
selection of sultqble roGt and tip sections Involves the
propor choics of noan line: h~aco, the aerodynamicist must
evaluate available .nean.-llne data. Yhe advantages cf choos-
ing one me~n line in preference to another for a particular
application can tsst bo shown By the effect~ of different
mean linss on the airfoil sect-ion characteristics The most
l~portant of theoe cha.raoterietlca qre

“.

at “ angle of aero lift
o

.,

a. slope of section lift curve, per d.egreo..

cl . optimum lift coefficient, & 09ctlon lift coef-
Opt ficiemt selected as middle of lo~-drag ra~ge

C;=x maximum sectloa lift coefficient

c~-ran~o angular rango corresponding to dlfferonce between
angle of attack at c2&= and at Cz=cl

. . .

Cd.-range extent of minimum section profilq-drag coefficient

. .

cmc/4 section pitching-moment coefficient about section
... . . quarter-chord point . ..

.

Vc section critical speed
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Seleqtlon -of Ifean Itlnes .,... . . . .

Rdferenae 1, ‘which presen{s ““mean llnes with values “
}

of a ranging from 0-3 to 1.0.,recommends that a value
of & be seleeted which 3s” eqUal to or g~eater than the

b’.iextent of the falltng pressure for the associated baslti
thiqknee-s fobm. & large variety ~fc loadinga may be ob-
tained by com’binatlons of the varidue mean. llaes: however.

.’ the pr~ent paper ts uonceraed with only the values of a“
as reoomminded in reference 1. “ .

Whecq the loading of an alrf.oll is changed, th”e lnher-
“ent characterist#.ce of *he basic thickaess form may be re-
tained and yet the airfoil seotion character’ie~lcs may be

“ “greatly varied. For example, by employing one type of.cam-
ber in preference to another, K higher section critical

‘- speed, a hi,gher maximum sect,ion lift coefficient, and a
higher sectic~ pitch.ing+n?ment coefficient may be obtained
without any bhango In seotton ]fllnlmumprofile-drag coeffl-
c$onto “ .

The trend of section,characterlstics can %e shown
p&tly by thaory end pertly b~ gonorallmtion~ from test
results, Thin-airfoil theory Indicates that a higher ‘
critical speed, a greatc~ section pitchinemonent cooffl-
cimnt, and a lowor valuo of section angle of.soro lift are
obtained as the mean line progresses in the direction from
a= o.? to a = 1.0: howevor, Indications of what happens
to tha maximum seotion lift coofficieat nust be obtalnod

‘ from test results..

. .
Test results giving the section characteristics of

airfoils with a uniform-load meaq line and-airfoils with
loadings othor than a E. 1.0 are presented. in figures 1
,to”ll. The charts for the airfOilS In the smooth cond-

ition (figk. 1 to 7) indicate a higher ~a~~s a greater

ao, and a narrower c~-range for the airfo$ls with. a = 100. .
‘.than~with a < 1.0, .The plots of . cd Qgalnst . ~Z show no

significant difference la Cd. alt@ough_ at the higher
mih -

values of c $, the drag Is conefderably less for the air-
. foil with ‘a = 1.0 than with other mean-line loadtngs. It
Is noted that the cdo-range for the airfoile with .a ~ l.o

shifts toward higher lift coefficients as compared to the
airfoil with the a = 1.0 loading, and also the clopt
Is greater in almost every. ln~tance. The section pitchin~

—-
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moment ooeffioient, .as is expected, Is greater (more nega-
tive) for the airfoil with the a =. 1.0 lo~ding, “

With regard. to rloughn~ss, ai~folls with a = 1.0
appear to be more oontaervative than airfoils with a < 3*00
!Che charts of the airfoils with roughne66 (flgsp 8 to 11)
show tlkt the a = 1,0 airfoll~ havo higher values of
cl an-d lower values of Od throughout the al-range

max
than the a < l.O airfoils,

..

Oom~arison of measured values and theoretical mean-
line values are shown 86 an aid in predicting airfoil
.seotlo~ characteristics from mean+llne ~.ta based on “thin- “
airfoil theory. Beaause thin-airfoil theory does not take
Into account ‘alrfotl-thiakness and boundary-layer con~id~r-
Stlo”na, .meav-line. data and .meaeured results might be 6x-
poctod to. diverge considerably, A compari60u of moaeured
values acd theoretical man-line values (figc. 12.150 15.)‘ .
shows that, for tha a < l*G airfoils, the theorettoal
angles of zero lift and the theoretical pitahing-mbment
ooeffleients are In fair agreement with *hoOe measured:,
the measured desi~n section lift ooeffioientfj, however, are
usuall,v higher than the theoretical values ks indicated in
the”airfoll designation mumbers. Although, for the airfoils
with a = lmO, the theoretical.and measured design lift co-
efficients are in fair agreement, thq measured angles of
zero lift and the measured pitching-moment coefficients aro
considerably less than t~ose indicated by theory. The de-
viation of values of measured pitching-moment coeffici~nt
from the theoretical values results because In Gxperimant
a uniform load was not naintalned over the airfoil to the
trailing adge. This fact Buggosts that a reducing ‘factor
might ba applied In order that tho thoorotical values of
pitching-moment coafficlant might conform ~ore closely to
tho measured values.

.

. Ifith increasing airfoil thickness, thoro Is an acco=
panylng Inorease In soctlon design lift and seotlon pitchin~
moment coeffi.oient. (See fig. 15. ) Although thin-kirfoil
theory obviousl~ gives no evidence of th16. increase, it Is
apparent from integrated theoretical pressure-distribution
calculations and is substantiated by test results.

00NCLUSIOE
,

.

.“ The general affecte of variation In the type of maan
line on the seotion characteristics of several representa- “

—..— . .
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tive low-drag airfoils are shown.. Zhe aonelatenay of

. ,,rseults I,ndicatea that these general trends are aultable o
for uae in the seloatlori of-mean lines f?or applloatton to
airfoils for wttioh teat reaulta are not available?

Langley Memo~lal Aeronautical Labbrstory,
l?at~onal Advlwory Ooaumlttee for A.eroaautias,

Langley Field. Pa.

1. Jacoba, Eaatman ~., Abbott, $ra E,, and Davidaon,
Mlltons Preliminary Zow-Pra#irfoll and ~lap
Data from Tests at Large Reynolds Humbera.and Low
Turbulence, and Supplement. NACA A.C.R., March
1942.

2. Jaooba, Eaatman H., Abbott, Ira H., and Davidson,
Mtlton: Invoatigation of ~xtreme Leadin@dge
EoughneSa on Thiok Low-Drag Airfoils to Indicate
those Oritlcal to Separation. XACA CP3$, June 1942.

3. Jaooba, E. M., and Abbott, I. H.: Angles of zero
Lift for Some HACA Low-Drag Airfoils. HACACJ3.,
Teb. 1942.

4. Theodoraen, T., and Garrlokp I. 3,; General Potential “
Theory of Arbitrary Wing Sections. Eep, No. 452, I
NACA, 1933.



2.8

2.4

2.0

6.3,f-420,a=’LO
/.6 \\

d \

$“,2
“% “ \
g t r

1\

5 .8 r
Q /
“*

.& .4~
/

j
~

o

-.4
Airhils:NACA#,4420

-.8 )‘ .R:9x I06
Chod: 24in.
Tesfs:Z?T 24/,402

.4‘ 408,421,und42d
I I i I I I I 1 1 I

““2 -16 -8 0
1 I I

/6 24
Sectionungk of o%ck, ~, u’eg

-J.2 -.8 -.4 0 .4 .8 k2 1.6 20
Sec+im /if+ coeffikkwt, ct.

Figure 1.- Section characteristics of two NACA63,4-420 airfoils.
●

+



>

,032

/ ~
— — —

\ \
.028— — — — — —- .— -- v

1
/ -

-1.2- -A -.4 0 4 .8 L2 1.6 2.0
Sedim Ii#coeffkientc1

Fipyre 2.- Section characteristics of two NACA652-415 airfoils.

I



2.8

2.4

2.0‘

65.3-4 /8,a= /.0
/.6 T \

(7

j’,2

:$ “ +’ \
#4 I

k \
U
~ .8

65,,-4/8,a= 0.5

% /\.

g .4 f
* /
u 1‘
u
% -0 b’

-.4
Airfoils: NACA653-4/8

\

-.&
R:9XI06

d Chord:24 in.
Teds: TDT 3/4, 320,

406 und411

‘/”2 -/6 -8 0
1 [

8 /6 24
Sec+ion angle of utiack, a., iieg

.032
.__.,. .— _-

.028

,

(f/

Figure 3.- Section characteristics of two NACA653-418 airfoils. w



Seciim lift coeffiutit. c1
%1
_l-J.
09

Figure 4.-” Section characteristics of two NACA654-421 airfoils.
0

IP



Secfbn angle of o+tuck, do, deg

+-H-H-F+

) -.8 -.4 0 .4 .8 /.2 “/.6 2.0
Sectiw lift coefficient cl

w.
m

●

Figure 5.- Section characteristics of two NACA65,3-418 airfoils. m



28

2.4

20
65 3;618 a=LO

t
‘1

1.6 / / ‘%+ ,_
! ,+’ ‘+\

c YY) ~

$ /.2
:Q
t
w
g .8 /)4

t*

g .4
~

$

0 ‘

i
#

-.4 ~ /
I+

A)+fai’s: NAOl 653-&’8_

+/ and 65J -6/8

-.8
R: 9x/Oe
Char-a! 24 IFI.
Tes+s: TDT 19522240Z.

and 420
-1.2 1 1 I I 1 1

-/6 -8 0 8 16 24
Sec+im anqle of u++ock, d, deg

Figure 6.- Section characters
653-618, a = 0.5 ai

t

r

.03?

-/.2 -.8 -.4 0 .4 8 /.2 /.6 2.0
Sec+ion Iif+ coefflcknt, c1

ics of an NACA65,3-618, a = 1.0 and an NACA
foil. m



_-

2.8

2.4 ‘

2,0 r

66, 2-2 ’16, a= /.0
/.6

c
\

~-,2
\\

\
:G “

b

s
t)
~ .8.

k;.

$ .4
2
u
$0

I

-.4 Ly

I Airfoi/s: IVACA66,2-216 _

-.8 }{ .R:9x I06
Chord: 24in. “
Tesfs: TDT 2/5,247,

4 and 249
-/.2~4LJ

O 8 16 24
Sec+ionongleof ffffock, aj, deg Secfion lift coefffcien~ ~ “-- “--

Figure 7.- Section characteristics of two NACA66,2-216 airfoils.



NACA Figs. 8,s

Figure 9.- Lift and-drag characteristics of two NACA 653-418 air-foils
with a standard roughness applied to the leading edges.
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ITACA Figs . 10,11
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